Oxidizing intermediates generated in the Fenton reagent: kinetic arguments against the intermediacy of the hydroxyl radical.

نویسندگان

  • D A Wink
  • C B Wink
  • R W Nims
  • P C Ford
چکیده

It has long been recognized that the aqueous mixture of hydrogen peroxide and ferrous ion, known as the Fenton reagent, generates powerful oxidants. Furthermore, the chemical intermediates and reaction pathways of the type generated by this reagent have been implicated in oxidative damage in biological systems. Although the subject continues to be debated, the hydroxyl radical (.OH) is generally invoked as the predominant oxidizing intermediate formed by the Fenton reagent. However, recent results from this laboratory have demonstrated that the principal pathway for the Fenton-mediated oxidation of N-nitrosodimethylamine does not involve .OH, but instead must involve the intermediacy of another strongly oxidizing species. This conclusion was based on stopped-flow spectrophotometric observation of a transient, A, believed to be an iron(II) nitrosyl adduct, which was formed at a rate five-fold faster than that predicted for formation of .OH. Subsequent experiments have shown that methanol and other organic compounds can quench the formation of A. This quenching procedure provides a unique spectrophotometric probe with which to examine the relative reactivities of putative Fenton-type oxidizing intermediates toward organic substrates. Presented here are the results of several such quenching studies, plus an overview of our mechanistic investigations of the Fenton reaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Fenton oxidation mechanism: reactivities of biologically relevant substrates with two oxidizing intermediates differ from those predicted for the hydroxyl radical.

The application of kinetic probes that allow one to determine relative reactivities of biologically relevant substrates with oxidizing intermediates in the Fenton reagent (H2O2 plus Fe2+ in acidic aqueous solution) is described. These results lead to the conclusion that there are two key intermediates with very different reactivity patterns. One (X) is proposed to be an iron complex formed via ...

متن کامل

Removal of Phenylurea Herbicides from Waters by using Chemical Oxidation Treatments

Four phenylurea herbicides (isoproturon, chlortoluron, diuron and linuron) were dissolved in different water matrices in order to study their chemical degradation by using UV radiation, ozone and some advanced oxidation processes (UV/H2O2, O3/H2O2, Fenton reagent and the photoFenton system). The waters used were: ultra-pure water, a commercial mineral water, a groundwater and a surface water ta...

متن کامل

ESR spin-trapping studies on the reaction of Fe2+ ions with H2O2-reactive species in oxygen toxicity in biology.

Using ESR spin-trapping techniques with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), we confirmed the 1:1 stoichiometry for the formation of hydroxyl radicals with Fe2+ in the Fenton reaction under experimental conditions wherein [H2O2] is 90 microM and [Fe2+] is very low, 1 microM or less. The stoichiometry decreased markedly as the Fe2+ concentration was increased. The efficiency of hydroxyl radi...

متن کامل

Fenton Process: a Case Study for Treatment of Industrial Waste Water

This paper explains the Fenton process – Advanced Oxidation Process for treatment of industrial waste water and effect of various parameters on Fenton process. AOPs are the process that generates the hydroxyl radical that oxidizes the impurity compounds and purifies the waste water. For generation of hydroxyl radical there are many methods are available. Fenton process is an advanced oxidation ...

متن کامل

Progress in the Mechanism and Kinetics of Fenton Reaction

Submit Manuscript | http://medcraveonline.com the reaction called the Fenton method [1]. Early research on the Fenton reaction was mainly focused on organic synthesis, enzymatic reactions and the cell damage mechanism [2]. It was noted that in the presence of a catalyst, H2O2 can be efficiently decomposed to generate oxidative active substances with strong oxidizing power, and degrade a variety...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental Health Perspectives

دوره 102  شماره 

صفحات  -

تاریخ انتشار 1994